
Object Roles and Runtime Adaptation in Java

Mario Pukall

Otto-von-Guericke University, P.O. Box 4120, 39016 Magdeburg, Germany
pukall@iti.cs.uni-magdeburg.de

Abstract. Program maintenance usually decreases the programs avail-
ability. This is not acceptable for highly available applications. Thus,
such applications have to be changed at runtime. Furthermore, since it
is not predictable what changes become necessary and when they have
to be applied, highly available applications have to be enabled for unan-
ticipated runtime adaptation at deploy-time [1]. We developed an object
role-based approach which deals with these requirements.

1 Introduction

Maintenance of highly available applications, such as banking systems or security
applications, is a cost-intensive task. This is due to the fact that maintenance
usually causes time periods of unavailability. Unfortunately, such programs can
not be prepared statically (i.e., at compile or load-time) for all changes that may
become necessary at runtime [1]. For that reason highly available applications
must be enabled for unanticipated changes at deploy-time, i.e., for unanticipated
changes at already loaded program parts.

Recent work suggests different approaches for runtime program adaptation
in Java. Approaches like Javassist [2, 3] or AspectWerkz [4–6] allow unantici-
pated changes until load-time, but not at deploy-time. Other approaches allow
only for anticipated changes, e.g., object wrapping [7–11]. However, approaches
such as PROSE [12, 13] and DUSC [14] allow unanticipated changes at deploy-
time. Unfortunately, PROSE uses a modified Java virtual machine (JVM). For
that reason the utilization of this approach is restricted to environments which
support the PROSE virtual machine. DUSC lacks of object state keeping class
updates when simultaneously updating the class interface. We conclude that non
of these approaches enables stateful Java programs for unanticipated changes at
deploy-time while running in a standard JVM.

In this paper we present the basic idea of an object role-based approach which
enables stateful Java applications for unanticipated runtime adaptation even at
deploy-time. It works with the Java HotSpot virtual machine1 and combines
object wrapping and Java HotSwap2.

1 The Java HotSpot virtual machine is the standard virtual machine of Sun’s current
Java 2 platforms.

2 Java HotSwap is supported by the Java HotSpot virtual machine.



2 Motivating Example

Similar to static program changes, runtime program changes usually effect dif-
ferent parts of a program. Figure 1 depicts a simple program which manages
and displays sorted lists. At the moment of program start it offers the bubble
sort algorithm in order to sort a list. The length of the lists which have to be
sorted grows while the program is running. At some point of execution time it is
noticed that the bubble sort algorithm is to slow to sort the lists in reasonable
time. For that reason the bubble sort algorithm has to be replaced by a faster
sorting algorithm, e.g., the quick sort algorithm. In order to apply the required
changes class SortedList as well as class DisplayList must be modified (Figure
1).

Fig. 1. Unanticipated adaptation. Fig. 2. Programs in the HotSpot VM [15].

3 Runtime Changes and the Java Virtual Machine

To understand the restrictions and possibilities for runtime program adaptation
in the HotSpot VM it is necessary to know how a program is represented in the
virtual machine. As depicted in Figure 2 the heap of the HotSpot VM stores the
runtime data of all class instances, whereas the method area is the memory area
of the HotSpot VM which stores all class (type) specific data.

The most adequate approach to alter a running program in Java is to replace
a class in the JVM and update its objects according to the changes. However,
this is difficult to realize in the HotSpot VM, since object references, object data,
and class data are directly wired (see Figure 2). In order to replace a class in this
virtual machine all instances of the class have to be destroyed and recreated.

Beside these restrictions the HotSpot VM enables method implementation
swapping at runtime. This mechanism is called Java HotSwap and is provided



by the Java Virtual Machine Tool Interface [16]. Unfortunately, Java HotSwap
does not allow to remove or add methods.

4 Runtime Changes and Object Roles

To systematically adapt a running program it is necessary to identify what ob-
jects have to be changed and what changes have to be applied to each object.
We observed that the degree of changes depends on the role an object plays in
the adaptation context, whether it acts as a caller or a callee. For instance in
Figure 1 an object of class DisplayList acts as a caller (i.e., it uses functions of
class SortedList), whereas an object of class SortedList acts as a callee.

4.1 Kinds of Callee Changes.

A callees job is to offer its functions to other objects (callers). To satisfy the
requirements of its callers it may have to provide new or changed functions. For
example callee SortedList must be extended by method quickSort() in order to
speed up the display function of caller DisplayList. Due to the variety of callee
changes we believe that, in order to offer new or changed functions, nearly each
part of a callee has to be changeable.

4.2 Kinds of Caller Changes.

The reason for changing an object in its role as a caller is to call new, changed,
or alternative functions provided by the callees it owns. These calls are largely
implemented within the callers methods. For that reason changing a caller only
requires modifications of the caller method implementation that contains the
function call chosen for adaptation. For instance in our scenario method display()
of class DisplayList has to be changed in order to call method quickSort() instead
of method bubbleSort() of class SortedList.

5 Object Wrapping and Java HotSwap

In the following we present the basic idea of a runtime program adaptation
approach which serves the required changes at objects playing role callee and
objects playing role caller.

5.1 Callee Adaptation using Object Wrapping

An appropriate strategy for runtime callee adaptation is object wrapping. It
means to embed the callee within another object denoted as wrapper. Within
the wrapping the callee still provides its functions as usual, whereas the wrapper
adds the necessary changes. Compared to the strategy of class replacement (as
suggested in Section 3) object wrapping induces two major advantages. First,



the callee’s class must not be unloaded, redefined and reloaded, i.e., the class
instances must not be destroyed and recreated. Second, the callee keeps its state.

Remembering our motivating example from Section 2 a callee of type Sort-
edList can be extended via a wrapping such as shown in Figure 3. Here wrapper
SortedListWrap adds the required quick sort algorithm (method quickSort()),
while it forwards calls to method bubbleSort() of callee SortedList. The han-
dover of the callee reference happens in the constructor of the wrapper.

Fig. 3. Callee adaptation via wrapping. Fig. 4. Caller adaptation via Java HotSwap.

5.2 Caller Adaptation using Java HotSwap

While callee adaptation can be achieved using object wrapping, two open issues
exist. First, the wrapping must be deployed. Second, the function calls of the
caller have to be changed. Both tasks can be performed using Java HotSwap.
Figure 4 illustrates the procedure according our motivating example. In order
to apply the quick sort algorithm to DisplayList the implementation of method
display() is swapped. The new method implementation wraps callee SortedList
by wrapper SortedListWrap and calls the quickSort() method.

6 Conclusion and Future Work

In this paper we proposed unanticipated runtime program adaptation at deploy-
time as an issue of changing objects. We suggested that the necessary degree
of object changes depends on the role an object plays, i.e., whether it acts as
caller or callee. Unfortunately, standard Java virtual machines, such as the Java
HotSpot virtual machine, do not natively offer functions for all required ob-
ject changes. For that reason we developed an approach which serves the whole
bandwidth of required object changes. It combines object wrapping and Java
HotSwap in order to enable unanticipated runtime adaptation at deploy-time.

Even though the basic approach presented in this paper is suitable for many
use cases, a lot of open questions exist. In current work we look into how to



achieve consistency and how to apply persistent wrappings. We also evaluate the
execution speed of programs which are modified using our runtime adaptation
approach.

References

1. Pukall, M., Kuhlemann, M.: Characteristics of runtime program evolution. In
Cazzola, W., Chiba, S., Coady, Y., Ducasse, S., Kniesel, G., Oriol, M., Saake, G.,
eds.: Proceedings of ECOOP’2007 Workshop on Reflection, AOP and Meta-Data
for Software Evolution (RAM-SE’07), Berlin, Germany (2007) 51–57

2. Chiba, S., Nishizawa, M.: An easy-to-use toolkit for efficient java bytecode trans-
lators. In: Proceedings of the second International Conference on Generative Pro-
gramming and Component Engineering (GPCE’03). (2003)

3. Chiba, S.: Load-time structural reflection in java. Lecture Notes in Computer
Science (2000)

4. Vasseur, A.: Dynamic aop and runtime weaving for java – how does aspectwerkz
address it? In: DAW: Dynamic Aspects Workshop. (2004)

5. Bonér, J.: Aspectwerkz – dynamic aop for java. Invited talk at 3rd International
Conference on Aspect-Oriented Software Development (AOSD). (2004)

6. Bonér, J.: What are the key issues for commercial aop use: how does aspectwerkz
address them? In: Proceedings of the 3rd International Conference on Aspect-
Oriented Software Development (AOSD). (2004)

7. Hunt, J., Sitaraman, M.: Enhancements: Enabling flexible feature and implemen-
tation selection. In: Proceedings of the 8th International Conference on Software
Reuse (ICSR’04). Lecture Notes in Computer Science, Springer (2004) 86–100

8. Kniesel, G.: Type-safe delegation for run-time component adaptation. In: Pro-
ceedings of the 13th European Conference on Object-Oriented Programming
(ECOOP’99), London, UK, Springer-Verlag (1999) 351–366

9. Bettini, L., Capecchi, S., Venneri, B.: Extending java to dynamic object behaviors.
In: Proceedings of the ETAPS’2003 Workshop on Object-Oriented Developments
(WOOD’03). Volume 82 of ENTCS. (2003)

10. Büchi, M., Weck, W.: Generic wrappers. In Bertino, E., ed.: Proceedings of
the 14th European Conference on Object-Oriented Programming (ECOOP’00).
Volume 1850 of LNCS. (2000) 201–225

11. Bettini, L., Capecchi, S., Giachino, E.: Featherweight wrap java. In: Proceedings
of the 2007 ACM symposium on Applied computing (SAC’07), New York, NY,
USA, ACM (2007) 1094–1100

12. Nicoara, A., Alonso, G., Roscoe, T.: Controlled, systematic, and efficient code
replacement for running java programs. In Sventek, J., Hand, S., eds.: Proceedings
of the 2008 EuroSys Conference, ACM (2008) 233–246

13. Nicoara, A., Alonso, G.: Dynamic aop with prose. In Castro, J., Teniente, E.,
eds.: Proceedings of the CAiSE’2005 Workshop on Adaptive and Self-Managing
Enterprise Applications (ASMEA’05), FEUP Edições, Porto (2005) 125–138

14. Orso, A., Rao, A., Harrold, M.: A technique for dynamic updating of java soft-
ware. In: Proceedings of the International Conference on Software Maintenance
(ICSM’02), Washington, DC, USA, IEEE Computer Society (2002) 649–658

15. Venners, B.: Inside the Java 2 Virtual Machine. Computing McGraw-Hill. (2000)
16. Sun: Java virtual machine tool interface version 1.1. Technical report, Sun Mi-

crosystems (2006) http://java.sun.com/javase/6/docs/platform/jvmti/jvmti.html.


